# PASSAGE PLANNING IN THE ERA OF BIG DATA

Captain Bernardo Obando Marine Pilot – Hay Point (Australia) Vice President, AMPI

2do Congreso de Lecciones Aprendidas Cartagena - Colombia





#### **Contents:**

AMPI
Big Data
Pilotage and Big Data
Reconceptualising pilotage
Case Study: Hay Point

#### AMPI: Who are we?

- Represent Marine Pilots in Australia
- Member of IMPA
- Continuous Professional Development Program
- Mentoring Program
- Peer Support Network
- Organise conferences and workshops
- Produce safe passage magazine
- Formulate Policy papers
- Lobbying regulators / politicians on behalf of pilots



#### What is Big Data?

Big data refers to massive, complex data sets that are rapidly generated and transmitted from a wide variety of sources. Big data sets can be structured, semi-structured and unstructured, and they are frequently analyzed to discover applicable patterns and insights about user and machine activity. Big Data includes texts, audios, videos, and real-time information.

Big Data attributes:

**1.Volume:** The huge amounts of data being stored.

**2.Velocity:** The lightning speed at which data streams must be processed and analyzed.

**3.Variety:** The different sources and forms from which data is collected, such as numbers, text, video, images, audio and text.

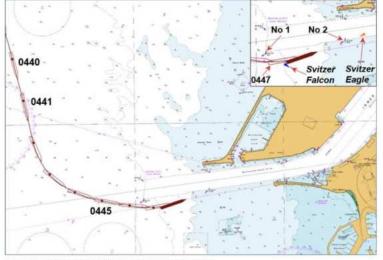
Big Data in pilotage

#### SYSTEMS APPROACH RESULTING IN:

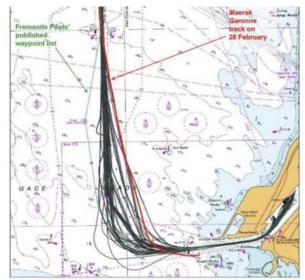
# MAXIMUM SITUATIONAL AWARENNESS ENHANCED MONITORING

No longer anonymous - unaccountable




#### Big Data in pilotage

#### **MAXIMUM SITUATIONAL AWARENNESS**


#### LEVEL 1: PERCEPTION OF THE ELEMENTS IN THE ENVIRONMENT LEVEL 2: COMPREHENSION OF THE CURRENT SITUATION LEVEL 3: PROJECTION OF FUTURE STATUS



#### Enhanced monitoring: accidents and big data



Source: Australian Hydrographic Service (annotated by ATSB)



Source: Australian Hydrographic Service (annotated by ATSB)



## **Recent accidents and big data**

the artic atte and a

Lu tetter

Sala and a set



1.1.7

### **Big Data in pilotage:**

How is big data applied to passage plans?

- · Maximum situational awareness for pilot and bridge team
- Enables the planning and execution to be monitored in real time by stakeholders (shipping companies, terminals, pilotage companies and authorities)
- Ensures the pilotage act is conducted within established parameters ensuring safety, accountability, optimization, and overall improving safety, efficiency and profitability.
- Invaluable for debriefing, training and conducting incident investigation



# Reconceptualisation Marine Pilotage



#### Big Data in pilotage: Passage planning

#### The ideal passage plan route:

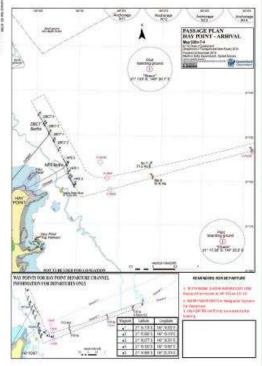
| Vessel characteristics<br>Under keel clearance<br>Environmental conditions (wind, tide, visibility)<br>Regulatory compliance<br>Contingency planning |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| UKC<br>Speed<br>Wind and tide parameters<br>Pilotage parameters (ETAs, passing)<br>Trim                                                              |
| Building a shared mental model<br>Electronic MPX                                                                                                     |
| Ship specifics<br>Efficiency (Commercial) considerations                                                                                             |
|                                                                                                                                                      |

#### What is a port provided passage plan?



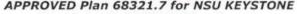







#### Hay Point - Australia




#### Case Study : Hay Point, Australia heightened SA











Calculated: 11Dec2022 0705 (3 hour forecast)

Transit Description: DBCT4 STBD SIDE TO (CHANNEL)

Sailing Draft: 17.95 m

Passage commencement window: 11Dec2022 1017 to 11Dec2022 1323

Commencement time: 11Dec2022 1030 Stage II Window: No Window

|                     | Stage II Window. No Window |                       |                     |  |             |                         |               |  |  |  |  |  |  |  |
|---------------------|----------------------------|-----------------------|---------------------|--|-------------|-------------------------|---------------|--|--|--|--|--|--|--|
| Vess<br>IMO:        | el<br>9641883              | Stability<br>Draft F: |                     |  |             | Environment<br>TIDES    | al Conditions |  |  |  |  |  |  |  |
|                     | JLK CARRIER                | Draft M:              |                     |  | HalfTide    | 1.89 m (-0.01m) 11/0700 | DWRB          |  |  |  |  |  |  |  |
| MMSI:<br>Call Sign: | 431977000<br>7KBP          | Draft A:<br>KM:       | 18.00 m             |  | Beacon2Tide | 1.88 m (+0.03m) 11/0700 | 11/0700       |  |  |  |  |  |  |  |
| Beam:               | 50.05 m                    | KG:                   | 13.63 m             |  |             |                         | BMA Mines     |  |  |  |  |  |  |  |
| LBP:                | 291.40 m                   | GMs:                  | -                   |  |             |                         | 11/0700       |  |  |  |  |  |  |  |
| LOA:                | 299.90 m                   | FSC:                  | 10                  |  |             |                         |               |  |  |  |  |  |  |  |
| DWT:                | 207,684 t                  | GMf:                  | 7.56 m              |  |             |                         |               |  |  |  |  |  |  |  |
| Flag:               | JAPAN                      |                       | 231,911 t           |  |             |                         |               |  |  |  |  |  |  |  |
| Summer Draft:       | 18.27 m                    | Water dens:1<br>Cb:   | 1.025 t/m3<br>0.862 |  |             |                         |               |  |  |  |  |  |  |  |

#### Window Open: 11Dec2022 1017

-

|       |               | S   | LOW         |             |           |           |           |       |               | AVE         | RAGE         |             |           |           |      | FAST  |               |     |              |               |         |           |      |  |
|-------|---------------|-----|-------------|-------------|-----------|-----------|-----------|-------|---------------|-------------|--------------|-------------|-----------|-----------|------|-------|---------------|-----|--------------|---------------|---------|-----------|------|--|
| UKC   | Limits        |     | UKC 1       | ime         | Lo        | c (ni     | n)        | UKC   | Limits        | 1           | JKC T        | ime         | Loc (nm)  |           | m)   | UKC   | C Limits      |     | UKC Time     |               | Loc (nm |           | m)   |  |
| BC    | 0.25          |     | 0.71        | 1019        |           | 0.08      |           | BC    | 0.25          | -           | 0.71         | 1019        |           | 0.08      |      | BC    | 0.25          |     | 0.71         | 1019          |         | 0.08      |      |  |
| MM    | 0.90          |     | 0.90        | 1019        |           | 80.0      |           | MM    | 0.90          |             | 0.90         | 1019        |           | 0.08      |      | MM    | 0.90          |     | 0.90         | 1019          |         | 80.0      |      |  |
| WP    | ETA<br>(AEST) |     | Deption (m) | Tide<br>(m) | BC<br>(m) | MM<br>(m) | GR<br>(m) | WP    | ETA<br>(AEST) | SOG<br>(kn) | Depth<br>(m) | Tide<br>(m) | BC<br>(m) | MM<br>(m) |      | WP    | ETA<br>(AEST) |     | Depti<br>(m) | h Tide<br>(m) |         | MM<br>(m) |      |  |
| DBCT4 | 1017          | 1.0 | 14.77       | 4.53        | 1.18      | 1.38      | 1.25      | DBCT4 | 1017          | 1.0         | 14,77        | 4,53        | 1.18      | 1.38      | 1.25 | DBCT4 | 1017          | 1.0 | 14.77        | 4.53          | 1,18    | 1.38      | 1.25 |  |
| Bon1  | 1111          | 6.5 | 14.88       | 5.16        | 1.60      | 1.96      | 1.99      | Bcn1  | 1105          | 7.5         | 14.88        | 5.10        | 1,43      | 1.80      | 1.93 | Bcn1  | 1101          | 8.5 | 14.88        | 5.05          | 1.25    | 1.62      | 1.88 |  |
| Bcn4  | 1132          | 6.5 | 14,97       | 5.33        | 1.81      | 2.18      | 2.26      | Bcn4  | 1123          | 7.5         | 14.97        | 5.27        | 1.63      | 1.99      | 2.19 | Bon4  | 1117          | 8.5 | 14.97        | 5.21          | 1.42    | 1.79      | 2.13 |  |
| Bon2  | 1147          | 6.5 | 15.06       | 5.42        | 1.98      | 2.43      | 2.43      | Bcn2  | 1136          | 7.5         | 15.06        | 5.36        | 1.79      | 2.24      | 2.36 | Bcn2  | 1128          | 8.5 | 15.06        | 5.30          | 1,59    | 2.04      | 2.31 |  |
| Sea   | 1155          | 6.5 | 15.00       | 5,46        | 1.96      | 2.42      | 2.41      | Sea   | 1143          | 7.5         | 15.00        | 5.40        | 1.78      | 2.24      | 2.35 | Sea   | 1134          | 8.5 | 15.00        | 5.34          | 1.57    | 2.04      | 2.29 |  |

#### Window Close: 11Dec2022 1323

|       |               | S        | LOW    |        |            |      |           |       |               | AVI | ERAGI        | E             |           |           |      | FAST  |               |             |              |             |           |           |      |  |
|-------|---------------|----------|--------|--------|------------|------|-----------|-------|---------------|-----|--------------|---------------|-----------|-----------|------|-------|---------------|-------------|--------------|-------------|-----------|-----------|------|--|
| UKC   | Limits        | UKC Time |        |        | e Loc (nm) |      |           | UKC   | C Limits      |     | UKC 1        | Time          | Loc (nm)  |           | m)   | UKC   | C Limits      |             | UKC Tin      |             | Time Lo   |           | m)   |  |
| BC    | 0.25          |          | 0.43   | 1459   |            | 7.96 |           | BC    | 0.25          |     | 0.46         | 1448          |           | 7.96      |      | BC    | 0.25          |             | 0.42         | 1439        |           | 7.96      |      |  |
| MM    | 0.90          |          | 0.91   | 1459   |            | 7.96 |           | MM    | 0.90          |     | 0.94         | 1448          |           | 7.96      |      | MM    | 0.90          |             | 0.90         | 1439        |           | 7.96      |      |  |
| WP    | ETA<br>(AEST) |          | G Dept | h Tide |            |      | GR<br>(m) | WP    | ETA<br>(AEST) |     | Depti<br>(m) | n Tide<br>(m) | BC<br>(m) | MM<br>(m) |      | WP    | ETA<br>(AEST) | SOG<br>(kn) | Depti<br>(m) | Tide<br>(m) | BC<br>(m) | MM<br>(m) |      |  |
| DBCT4 | 1323          | 1.0      | 14.77  | 5.32   | 1.96       | 2.16 | 2.04      | DBCT4 | 1323          | 1.0 | 14.77        | 5.32          | 1.95      | 2.16      | 2.04 | DBCT4 | 1323          | 1.0         | 14,77        | 5.32        | 1,96      | 2.16      | 2.04 |  |
| Bont  | 1417          | 6.5      | 14.88  | 4.75   | 1.16       | 1.53 | 1.58      | Bcn1  | 1411          | 7.5 | 14.88        | 4.83          | 1.12      | 1.50      | 1.65 | Bcn1  | 1407          | 8.5         | 14.88        | 4.88        | 1.04      | 1.42      | 1.71 |  |
| Bon4  | 1438          | 6.5      | 14.97  | 4.49   | 0.93       | 1.30 | 1.41      | Bcn4  | 1429          | 7.5 | 14.97        | 4.60          | 0.91      | 1.29      | 1.52 | Bcn4  | 1423          | 8.5         | 14.97        | 4.69        | 0.85      | 1.23      | 1.61 |  |
| Bcn2  | 1453          | 6.5      | 15.06  | 4.29   | 0.80       | 1.27 | 1.30      | Bcn2  | 1442          | 7.5 | 15.06        | 4.44          | 0.82      | 1.28      | 1.44 | Bcn2  | 1434          | 8.5         | 15,06        | 4.55        | 0.78      | 1.24      | 1,55 |  |
| Sea   | 1501          | 6.5      | 15.00  | 4.19   | 0.63       | 1.11 | 1.13      | Sea   | 1449          | 7.5 | 15.00        | 4.35          | 0.67      | 1.15      | 1.29 | Sea   | 1440          | 8.5         | 15.00        | 4.47        | 0.64      | 1.12      | 1.41 |  |

#### Passage Commencement: 11Dec2022 1030

|       |               | S                       | LOW          |               |           |           |      |                          |               | AVE         | RAGE         |             |           |           | FAST      |       |               |             |             |               |           |           |      |
|-------|---------------|-------------------------|--------------|---------------|-----------|-----------|------|--------------------------|---------------|-------------|--------------|-------------|-----------|-----------|-----------|-------|---------------|-------------|-------------|---------------|-----------|-----------|------|
| UKC   | Limits        | imits UKC Time Loc (nm) |              |               |           |           | m)   | UKC Limits   UKC Time Lo |               |             |              |             |           | c (ni     | m)        | UKC   | KC Limits     |             | UKC 1       |               | Lo        | c (nr     | m)   |
| BC    | 0.25          |                         | 0.88         | 1032          |           | 0.08      |      | BC                       | 0.25          |             | 0.88         | 1032        |           | 0.08      |           | BC    | 0.25          |             | 88.0        | 1032          |           | 0.08      |      |
| MM    | 0.90          |                         | 1.07         | 1032          |           | 0.08      |      | MM                       | 0.90          |             | 1.07         | 1032        |           | 0.08      |           | MM    | 0.90          |             | 1.07        | 1032          |           | 80.0      |      |
| WP    | ETA<br>(AEST) | SOC<br>(kn              | Depti<br>(m) | h Tide<br>(m) | BC<br>(m) | MM<br>(m) |      | WP                       | ETA<br>(AEST) | SOG<br>(kn) | Depth<br>(m) | Tide<br>(m) | BC<br>(m) | MM<br>(m) | GR<br>(m) | WP    | ETA<br>(AEST) | SOG<br>(kn) | Dept<br>(m) | h Tide<br>(m) | BC<br>(m) | MM<br>(m) |      |
| DBCT4 | 1030          | 1.0                     | 14.77        | 4,70          | 1.35      | 1.54      | 1.42 | DBCT4                    | 1030          | 1.0         | 14,77        | 4.70        | 1.35      | 1.54      | 1.42      | DBCT4 | 1030          | 1.0         | 14.77       | 4.70          | 1.35      | 1.54      | 1.42 |
| Bcn1  | 1124          | 6,5                     | 14.88        | 5.27          | 1.71      | 2.08      | 2.10 | Bon1                     | TUS           | 7.5         | 14.88        | 5.22        | 1,55      | 1.92      | 2.05      | Bcn1  | 1114          | 8.5         | 14,88       | 5.18          | 1,38      | 1.75      | 2.01 |
| Bcn4  | 1145          | 6.5                     | 14.97        | 5.42          | 1.89      | 2.26      | 2.34 | Bcn4                     | 1136          | 7.5         | 14.97        | 5.36        | 1.72      | 2.09      | 2.28      | Bcn4  | 1130          | 8.5         | 14.97       | 5.32          | 1.53      | 1.89      | 2.24 |
| Bcn2  | 1200          | 6.5                     | 15.06        | 5.48          | 2.03      | 2.49      | 2.49 | Bcn2                     | 1149          | 7.5         | 15.06        | 5.44        | 1.87      | 2.32      | 2.44      | Bcn2  | 1141          | 8.5         | 15.06       | 5.39          | 1.68      | 2.13      | 2.40 |
| Sea   | 1208          | 6.5                     | 15.00        | 5.51          | 2.00      | 2.47      | 2.46 | Sea                      | 1156          | 7.5         | 15.00        | 5.47        | 1.84      | 231       | 2.42      | Sea   | 1147          | 8.5         | 15.00       | 5.42          | 1.65      | 2.12      | 2.37 |



INTERNATIONA

WAVES

Sea 0.36 m, 3.7 s

Swell 0.07 m, 7.7 s Sea 0.40 m, 4.0 s

Swell 0.08 m, 11.8 s

#### Case Study : Hay Point, Australia Heightened SA

- 1. Day visual
- 2. Night visual
- 3. Navigational aids (buoys physical and virtual)
- 4. Radar
- 5. ECDIS
- 6. PPU



#### Case Study : Hay Point, Australia Heightened SA





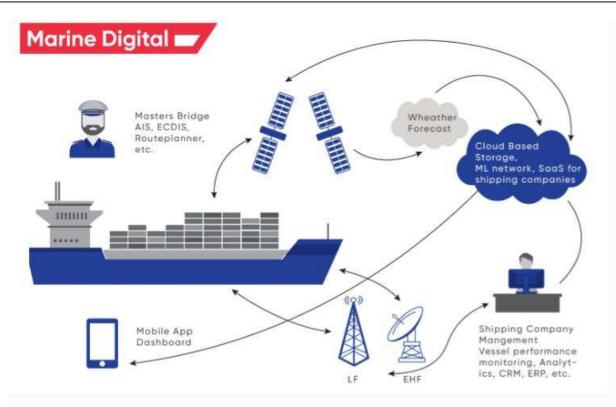


#### Case Study : Hay Point, Australia Heightened SA





#### Case Study : Hay Point, Australia Heightened SA –augmented reality




#### Case Study : Hay Point, Australia EM: the regulator (MSQ)



LISTRALASIAN

#### Case Study : Hay Point, Australia EM: the shipowner





#### Case Study : Hay Point, Australia EM: third parties









#### Challenges



Route Exchange

- RTZ Format IEC 61174:2015
- S100 / S421 route exchange format
- Cyber Security
- Performance standards & manufacturer differences

Connectivity

Legal issues

**Proprietary Data** 



#### Acknowledgements



Ravi Nijjer Principal Consultant Marine Consultancy Group Pty Ltd Tel & Fax: + 61 (0) 3 9830 0649 Mob: +61 (0) 419 565 860 Email: ravi.nijjer@marcon.com.au Captain Ravi Nijjer Captain Ricky Rouse - AMPI Captain Damian Laughlin – PPSP







MAXIMISING SITUATIONAL AWARENESS

Crown Towers Hotel Perth, Western Australia

1-5 October 2023

01.10.2023 - 05.10.2023 Perth, Australia